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Introduction

This document is not meant to be a textbook, but rather a review guide or a study aide
for high school students who have completed the Advanced Placement AB Calculus curricu-
lum. All other BC Calculus topics are separately outlined in The Calculus Bible, The New
Testament by the same author.

Part 1
Functions

1 Domain, Range, Asymptotes, and Fundamental Prop-
erties

1.0.1 Polynomials
e D=R

1.0.2 Rational
%D:R—{X: g(x) = 0}

Vertical asymptotes

e x = a, where a is an exclusion from the domain

Horizontal symptotes
e v = 0 if g(z)is a higher order than f(z)

e v = ratio of leading coefficients if f(z) and g(x) are of same order



1.0.3 Trigonometric

y = sin(x)

e D=R

e R—-1<y<1

y = sec(x)

e D = {z: 2 # " }where n is an odd integer
e R=|y[=1

y = tan(x)

oD — {:c tx# g—”}where n is an odd integer
e R=R

Identities

o cos?(z) + sin*(z) =1

e sin(2x) = 2sin(z)cos(x)

)
o c0s(2x) = cos*(z)-sin®(x)
)

o tan’(z) + 1 = sec*(x)
1.0.4 Inverse Trigonometric
y = sin~'(x)

y = sec!(x)
=lz| >1

D
oR:OSyggorﬂgyg%’r

y = tan~'(x)

—R

D
e R=F<y<3



1.0.5 Exponential

y=5b",b>0
e D=R
e R—=y>0

e Remember: y = b* < = = logyy

1.0.6 Logarithmic
y = logpx
e D=2>0

e R—R

Properties
e logy(m + n) = logym + logyn
e logy(%) = logym-—logyn

e logym” = rlogym

lOgbl =0

logyh® = x

° blogbm .

2 Absolute Value

e |f(x)| “flips” all points above the x-axis

e f(|z|) makes the function even

3 Inverses

e Found by switching the places of x and y and solving for y

e Remember: y = log,x and y = b are inverses, which means y = In(z) and y = e” are
inverses



4 0dd and Even Functions
4.1 A function is odd if f(—z)=—f(z) Ve € D

e Symmetrical with the origin

e Polynomials with all odd powers (no constants, because 4 = 4z°)

4.2 A function is even if f(—z) = f(z) Vx € D

e Symmetrical with the y-axis

e Polynomials with all even powers

4.3 Remember, many functions are neither odd nor even



5 Graphs You Must Know

y=>5b"b>1

y=>b",b<1




Y= lOgbLE (includes Yy = ln(:U))

6+

54

22 +y? = r*(note: r is the radius, so 3z + 3y* = 15 is a circle of radius
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6 Zeroes of a function

e Set the function = 0 and solve

e For cubics, find any rational root, r, and synthetically divide by (z—r)

— If you cannot find a rational root, use Newton’s method of approximation: z,,; =
f(xn)
Tn—4
f'(@n)

7 Symmetry

o yaxis: (¢,4) — (,9)
e x-axis: (x,y) — (z,~y) (non-function)
e origin: (z,y) — (—x,—y)

(v,

8 Limits

8.1 Theorems

1. Limit of a sum or difference = sum or difference of the limits
2. Limit of a product = product of the limits
3. Limit of a quotient = quotient of the limits (unless the limit of the denominator = 0)

4. Limit of the n* root = n** root of the limit

8.2 Limits you must know

1. blm(?)l 7 = +00, where a > 0 and finite

2. blzm 7 = —00, where a > 0 and finite
—>07

3. blzm+b = —00, where a < 0 and finite
—0

4. blzm & = 400, where a < 0 and finite
—>07

5. lim ¢ =0, where a is finite

b—too?

6. liﬂ%(ljtx)i =lim(1+21)7=e

r—00



8.3 Non-existent limits

e +oous a non-existent limit (liﬂgx—gdoesn’t exist)
Tr—

e limits which do not converge are non-existent limits

— Ex: limsin(L) and lim sin(x) are non-existent (fluctuates between 1 and -1)

z—0 T—00

o If lzm+f(:c) # lim f(x) then the limit does not exist

Tr—a Tr—a—

— Ex: lim" does not exist
xz—0 %

9 Continuity

9.1 Definition

A function is continuous at a if f(a) exists and lim f(z) = lim f(z) = f(a)

z—a™t T—a~

9.2 Theorems

1. If f(x) and g(x) are continuous at ¢ then

(@) f+g,fy9,fxg, fogare continuous at g(c)
(b) g is continuous at ¢ if g(c) # 0

2. If f(z) is continuous on [a,b] , then f(z) has a maximum and a minimum value on

[a, 0]

3. If f(z) is continuous on [a,b] and f(a) < ¢ < f(b) then 3 at least one z in [a,b] :

flx)=c

Part II
Differential Calculus

10 The Derivative

10.1 Definitions (you must know them!)

L. f'(x) = é@ﬁféw (generates a slope function)

5 f1(q) = lim l@-F@ _ i fa+h) - f(a)
@) = tim ot = fim ety

10



10.2 Theorems

Licf(z)] = cL[f(x)] where c is a constant

2. Product rule: ZZ[f(z)g(x)] = f(2)g'(x) + g(x)f'(2)

3. Quotient rule: % [%] = g(x)f/((:;)(;)];gx)g,(x)

4. Chain rule: L[f(u)] = f/(u)%

5. Implicit: Llu(y)] = u’(y)j—:yc
6. Logarithmic: If y = f(2)9@ then In(y) = g(x)in(f(x)) and Z—g = yLg(2)in(f(z)) =
f@)?@ Lg(@)in(f(2))

7. Rolle’s Theorem: If f(x) is continuous on [a,b] and differentiable on (a,b) and f(b) =
f(a) =0 then 3¢ in (a,b) : f'(c) =0
8. Mean Value Theorem: If f(x) is continuous on |a,b] and differentiable on (a,b), 3¢ in

(,b) : 1/(c) = 101

10.3 Differentiation Formulas

1. i[u”] =y e

= dx
L Tsin(u)] = cos(u)L
3. Llcos(u)] = —sin(u) %
4. Lltan(u)] = sec®(u) 5
5. L [cot(u)] = —csc?(u) 4
6. Lsec(u)] = sec(u)tan(u)2
7. %[csc(u)] = fcsc(u)COt(“)%
8. ZlsinT'(u)] = =%
9. fltan™(u)] = 7z %
10. Lsec™(u)] = u\/jﬂfil—;
11. L[a"] = a"In(a)
12. Llev] = eudu
13. Llinful] = ;4

11



10.4 Differentiability vs. Continuity

e The fact that f(z) is non-differentiable at ¢ is not sufficient to conclude that f(x) is
discontinuous at c

— For example, y = |2-3|
e For f(x) to be differentiable at ¢, f(z) must be continuous at ¢

e Continuity does not necessarily imply differentiability

11 Applications of the derivative

11.1 Slope of curve

The slope of a curve at point (a,b) = f’(a) . Remember that (a, b) is on both the curve and
the tangent line.

11.2 Slope of normal line

The slope of the normal line at point (a,b) = 77a)

11.3 Curve Sketching

11.3.1 Increasing/Decreasing
o If f/(x) > 0 then f(z) is increasing

o If f/(x) <0 then f(z) is decreasing

11.3.2 Critical Points
o If f'(c) =0 then (c, f(c)) is a critical point

o If f/(c) does not exist, then (c, f(c)) is a critical point

11.3.3 Relative extrema

e If z = cis a critical point and f'(x) > 0 to the left of ¢ and f'(z) < 0 to the right of
¢, then (¢, f(c)) is a relative maximum

e If z = cis a critical point and f'(x) < 0 to the left of ¢ and f'(z) > 0 to the right of
¢, then (¢, f(c)) is a relative minimum

If x = ¢ is a critical point and f”(c) < 0 then (¢, f(c)) is a relative maximum

o If x = cis a critical point and f"(c) > 0 then (¢, f(c)) is a relative minimum

12



11.3.4 Inflection points

If concavity changes, (f”(x) changes sign) at the point (zo, f(x¢)), then (zo, f(x¢)) is
an inflection point

If f'(xy) = 0 then there is also a horizontal tangent at that point
If f'(xy) = Loo then there is also a vertical tangent at that point

If (¢, f(c)) is a critical point and f'(z) does not change sign at = = ¢, then (¢, f(c)) is
an inflection point

If (zo, f(z0)) is an inflection point, then f”(x¢) = 0. Note: the converse is not neces-
sarily true!

11.3.5 Concavity

12

13

If f”(z) > 0 on (a,b) then the graph of f(z) is concave up on (a,b)

If f"(z) <0 on (a,b) then the graph of f(x) is concave down on (a, b)

Max-min word problems

. Evaluate the function at the endpoints and at all critical points.

The largest value will be the absolute maximum and the smallest value will be the
absolute minimum.

Remember, continuous functions have both an absolute maximum and an absolute
minimum on a closed interval.

Motion along a line

Go from z(t) — v(t) — a(t) by differentiating.

14

1.

Related Rates

Find an equation which relates the quantity with the unknown rate of change to quan-
titie(s) whose rate(s) of change are known.

. Differentiate both sides of the equation implicitly with respect to time.

Solve for the derivative that represents the unknown rate of change.

. Then evaluate this derivative at the conditions of the problem.

13



Part 111
Integral Calculus

15 Antiderivatives

15.1 Definition
F(z) is an antiderivative of f(z) if and ouly if F'(z) = f(z)

15.2 Applications
15.2.1 Exponential growth and decay
e If you know that Z—f = ky then y = Ce! < y = yoe* where yo = y(0)

e L is the growth rate and may be given as a percent

_In2

in2 —
o Tiouble = % ) Thatve = L

15.2.2 Differential Equations

1. Separate the variables so that the equation reads f(y)dy = g(z)dx .

2. Integrate both sides, adding the constant to the side with the independent variable.
Le. [fly)dy= [ f(z)dx+C

3. Solve for y if possible.

16 Techniques of Integration

16.1 Integrals you must know
l. f[du=u+C
2. [adu=au+C

u'r+1
r+1

+C

3. furdu:
4. [Ldu=Inju|+C

5. etdu=¢e*+C

u'r+1
r+1

+C

6. [u"du=
7. [ sin(u) du = —cos(u) + C
8. [cos(u)du = sin(u) + C

14



9. [sec®(u)du = tan(u) + C
10. [ esc®(u) du = —cot(u) + C
11. [ sec(u)tan(u) du = sec(u) + C
12. [ esc(u)cot(u) du = —csc(u) + C
13. [tan(u)du = ~In|cos(u)| + C
4. [ cot(u)du = In|sin(u)| + C
15. [ \/1177 du = sin~'(u) + C

16. [ i du = tan™"(u) + C

7. [ ﬁ du = sec”(u) + C

16.2 U-substitution

The purpose of a u-substitution is to make a difficult integral look like one of the integrals
above.

16.3 Inverse chain rule theorem
[ o)) = Fla@) +©

This theorem can be used to solve u-substitution integrals like [ 22v1-922dx .

16.4 Integration by parts
/ f(@)g/(2) dx = f(x)g(z) - / F(@)g(x) de

b b
/ F(@)g (@) = f(x)g(x)]'- / f'(@)g(x)de

17 The Definite Integral

17.1 Definition

b
/f(a: = lim fok )Axy,

maxAx—0

15



17.2 Fundamental theorems
-ﬁﬂmsz@4w>
i [ f(@) = f(2)
. f@f( x)dr = f(x) +
o [T F(t)dt = F(z) where F(a) = 0
& L f(B)dt = f(

z)

17.3 Approximations to the definite integral (n will be given)

17.3.1 Riemann sums using midpoints

/f [y1+y2+ .+ Yn]
17.3.2 Trapezoids

[ @~ S @) + 270 + 27+ 4 50

17.4 Definite integral as area

. fabf(x)dx —area between f(z) and the x-axis on [a,b] if f(x) > 0 on [a, b]

’ =area between f(x) and the x-axis on [a, b] if f(z) <0 on [a,b]
. f y)dy =area between u(y) and the y-axis on [¢,d] if u(y) > 0 on [c, d]

fd u(y)dy’ =area between u(y) and the y-axis on [c,d] if u(y) <0 on [c,d]

[

18 Applications of the Definite Integral

18.1 Motion along a line
e Go from a(t) — v(t) — «(t) by integrating.

e Remember, the given conditions will determine the values of the constants generated
by integration.

t=b
t=a

e Displacement = v(t)dt

e Distance traveled is the sum of the distances traveled right and left. Evaluate the
position at time= a, at every value of time where v(t) = 0, and at time= b. Add up
the distanced traveled on each time interval.

16



18.2 Mean value (average value of a function) on [a, b]

_ fab f(z)dx

fa = 102

18.3 Area between two curves

When finding the area between two curves, either axis can be used for orientation. However,
the variable of integration must be the same as the axis of orientation.

o X-axis: R = fab [f(z)-g(x)] dz

e Y-axis: R = fcd [uy)—v(y)] dy

18.4 Volume of a solid of revolution
18.4.1 Around an axis

The axis of revolution is determined in the problem. However, either axis can be used for
orientation. If the axis of orientation is different from the axis of revolution, the volume

must be found using shells.
In general, it is simplest to use disks/washers for volumes of revolution around the x-axis,
and shells for volumes of revolution around the y-axis.

e Disks with one curve (axis of revolution=axis of orientation=variable of integration):

v —azis: V :w/ab ()] da

d
y—azxis: V = 7r/ [u(y)]2 dy

e Washers with two curves (axis of revolution=axis of orientation=variable of integra-
tion)

r—azis: V = 7r/ [[f(:v)]zf[g(x)ﬂ dx

y—azis: V=n / ()~ (o)) dy

18.4.2 Around a line

If the line is parallel to the x-axis, then your variable of integration must be . If the line is
parallel to the y-axis, then your variable of integration must be y. In either case, remember:

b
V= 7r/ (szrz) dr

Both radii must be in terms of the appropriate variable.

17



18.4.3 Volumes of known cross sections

If the cross-sections are perpendicular to the x-axis, then your variable of integration is x.
If the cross-sections are perpendicular to the y-axis, then your variable of integration is y.
In either case, remember:

- /  A(e)d

V= / d Ay)dy

18



